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1. Introduction

In numerical lattice QCD, the Schrödinger functional mainly serves as a probe in scaling

studies of the theory close to the continuum limit [1, 2]. The non-perturbative computa-

tion of renormalization factors, for example, is an important case where the Schrödinger

functional proved to be very useful (see ref. [3] for an introduction).
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In the continuum limit the Schrödinger functional is obtained by restricting the time

coordinate x0 to a finite range, 0 ≤ x0 ≤ T , and by imposing Dirichlet boundary conditions

on the fields at x0 = 0 and x0 = T . The boundary conditions break chiral symmetry, but

the chiral Ward identities remain valid away from the boundaries and thus forbid the

mixing of operator insertions belonging to different chiral multiplets, for example, as is the

case in the absence of the boundaries.

The symmetry properties of the Schrödinger functional in lattice QCD should ideally be

the same if the chosen lattice Dirac operator preserves chiral symmetry on the infinite lattice

via the Ginsparg–Wilson relation [4]–[8]. However, in the presence of the boundaries, the

Dirac operator and the Ginsparg–Wilson relation must both be modified. Chiral symmetry

would otherwise not be broken and the lattice Schrödinger functional could not possibly

have the correct continuum limit. The modifications must evidently be local and be linked

to the boundary conditions, but without further insight it is difficult to say how to proceed

from here.

A theoretically attractive possibility, recently studied by Taniguchi [9], is to define

the Schrödinger functional through an orbifold projection. The boundary conditions are

determined by the Z2 orbifold symmetry in this case, which is taken to be the product of

a time reflection and a chiral rotation. As it turns out, however, the latter leads to some

technical difficulties on the lattice and one ends up with a lattice Dirac operator whose

determinant has a non-trivial phase. Moreover, the construction becomes rather artificial

when the masses of the quarks do not vanish.1

To a large extent, the solution proposed in this paper is based on universality consid-

erations. Stated somewhat superficially, the idea is that Schrödinger functional boundary

conditions do not require any fine-tuning and will thus be satisfied automatically in the

continuum limit, as long as the lattice theory in the presence of the boundaries respects

locality and the obvious lattice symmetries. The problem then reduces to finding a lattice

Dirac operator that has these properties and additionally satisfies the Ginsparg–Wilson

relation away from the lattice boundaries.

Starting from the Neuberger–Dirac operator in infinite volume [7], such operators are

not too difficult to construct. It may be useful, however, to first recall some basic facts

on the quark sector of the Schrödinger functional (section 2) and to address the issue

of universality in some detail (section 3). In section 4, Ginsparg–Wilson fermions in one

dimension are briefly discussed and it is then only a small step to write down an acceptable

lattice Dirac operator in four dimensions (section 5).

2. Quark fields and Dirac operator in the continuum theory

In the following, it will be assumed that the reader is familiar with the Schrödinger func-

tional in QCD [1, 2]. Most of the time the SU(3) gauge field will play a spectator rôle

1All these problems disappear if chirally rotated boundary conditions are adopted, as suggested by

Sint [10]. The goal here, however, is to define the Schrödinger functional with the standard parity-conserving

boundary conditions [2].
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and its presence can be largely ignored. In this section some properties of the quark sector

in the continuum theory are highlighted. This serves partly to introduce the subject and

partly to guide the construction of the lattice theory in the later sections.

2.1 Boundary conditions

It suffices to consider a single quark with mass m, since all formulae and comments trivially

extend to the case of several quarks with arbitrary masses. The quark and antiquark fields

ψ(x) and ψ(x) are defined at all times x0 ∈ [0, T ] and are required to satisfy2

P+ψ(x) = ψ(x)P− = 0 at x0 = 0 , (2.1)

P−ψ(x) = ψ(x)P+ = 0 at x0 = T , (2.2)

where P± = 1
2
(1 ± γ0). These boundary conditions are invariant under space rotations,

parity, time reflections (x0 → T − x0) and charge conjugation.

The quark action in the presence of a gauge field Aµ(x) is then given by

SF =

∫ T

0

dx0

∫

d3xψ(x)Dmψ(x), (2.3)

Dm = γµDµ + m, Dµ = ∂µ + Aµ. (2.4)

Usually the Schrödinger functional is set up with inhomogeneous boundary conditions,

where the boundary values serve as sources for the quark field at x0 = 0 and x0 = T [2].

One may, however, just as well adopt homogeneous boundary conditions, as is done here,

and introduce the boundary quark fields directly through

ζ(x) = P−ψ(x), ζ(x) = ψ(x)P+ at x0 = 0 , (2.5)

ζ ′(x) = P+ψ(x), ζ ′(x) = ψ(x)P− at x0 = T . (2.6)

These are just the non-zero Dirac components of the quark fields at the boundaries.

2.2 Spectrum of the Dirac operator

Let H be the linear space of all smooth quark fields that satisfy the required boundary

conditions. With respect to the natural scalar product in this space,

(ψ,χ) =

∫ T

0

dx0

∫

d3xψ(x)†χ(x) , (2.7)

the operator Qm = γ5Dm is easily shown to be hermitian. Since Qm is also elliptic, it follows

that this operator has a complete orthonormal set of eigenfunctions vn ∈ H, labelled by an

index n = 0, 1, 2, . . ., with real eigenvalues λn.

For non-negative quark masses m, the eigenvalues are bounded from below by

λ2
n ≥ m2 + µ2, (2.8)

2The notation is the one commonly used in lattice QCD. In particular, the space-time metric is euclidean

and the Dirac matrices γµ, µ = 0, . . . , 3, are taken to be hermitian. The fifth Dirac matrix, γ5 = γ0γ1γ2γ3,

is then also hermitian. Where appropriate, the Einstein summation convention is applied.
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where µ denotes the spectral gap at m = 0. This is a straightforward consequence of the

identity

λ2
n = ‖Qmvn‖

2 = m2 ‖vn‖
2 + ‖Qm|m=0 vn‖

2

+m

∫

x0=0

d3x vn(x)†vn(x) + m

∫

x0=T
d3x vn(x)†vn(x). (2.9)

Moreover, using the fact that the current vn(x)†γµvn(x) is conserved at m = λn = 0, it is

possible to show that the massless Dirac operator has no zero modes.

Note that the bound (2.8) becomes invalid at m < 0. The Dirac operator has eigen-

modes localized at the boundaries in this case, with eigenvalues that decrease exponentially

at large |m|T . These are just the well-known domain wall fermion modes. The fact that the

sign of the quark mass matters is a consequence of the breaking of chiral symmetry through

the boundary conditions. This is also why the eigenvalues at non-zero quark masses are

not simply related to those at vanishing mass.

2.3 Determinant of the Dirac operator

Since there are positive and negative eigenvalues λn, the determinant, det Qm, may have

a non-trivial phase. However, this is not the case if the standard lattice regularization is

employed [2]. Other regularizations may give different results, but the universality of the

continuum limit implies that the determinant must always be real after removal of the

ultraviolet cutoff, up to some local terms perhaps. These can always be “renormalized

away”, and the requirement of a real determinant then becomes part of the definition of

the theory.

At non-negative quark masses, the quark determinant actually has a definite sign in

this case, because the eigenvalues of Qm never pass through zero. In the functional integral,

the quark determinant may thus be replaced by its absolute value.

2.4 Chiral symmetry properties of the quark propagator at m = 0

As a differential operator, the massless Dirac operator anticommutes with γ5 and the local

chiral Ward idenitites are thus not affected by the presence of the boundaries. The quark

propagator S(x, y), on the other hand, transforms according to

γ5S(x, y) + S(x, y)γ5 =

∫

z0=0

d3zS(x, z)γ5S(z, y) +

∫

z0=T
d3zS(x, z)γ5S(z, y) . (2.10)

This equation is easily established by noting that, as a function of x, the expression on the

left solves the homogenous Dirac equation. The other side of the equation is then obtained

by reconstructing the solution from its boundary values at x0 = 0 and x0 = T .

In QCD with more than one massless quark, eq. (2.10) implies the non-singlet chiral

Ward identity

〈

λaγ5ψ(x)ψ(y) + ψ(x)ψ(y)λaγ5

〉

F

=

∫

d3z
〈

ψ(x)ψ(y)
{

ζ(z)λaγ5ζ(z) + ζ ′(z)λaγ5ζ
′(z)

}〉

F
, (2.11)
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where λa is any traceless matrix in flavour space and 〈. . .〉F denotes the expectation value

in the quark sector. The breaking of chiral symmetry through the boundary conditions is

made explicit by this formula. Purely from the symmetry point of view, it actually looks

as if there were a unit mass term at the boundaries.

3. Field theories on lattices with boundaries

In continuum field theories, the notion of smoothness plays a central rôle. Differential

operators can only act on smooth functions, for example, and boundary conditions really

only make sense when imposed on such functions.

The situation in lattice field theory is quite different. Strictly speaking, boundary

conditions are no longer imposed on the fields but instead are encoded in the lattice action.

As usual different lattice theories may have the same continuum limit, where now the

characterization of the latter must include a specification of the boundary conditions. An

important point to note is that the possible boundary conditions are strongly constrained by

the requirement of locality, the lattice symmetries and by power-counting arguments. There

are then not many more universality classes than there are in the absence of boundaries.

The aim in this section is to make these remarks a bit more concrete, so that they

can be applied to the Schrödinger functional in QCD. Eventually, the argumentation is

based on Symanzik’s work on the renormalization of quantum field theories in the presence

of boundaries [11] and also on the theory of boundary critical phenomena in statistical

mechanics (see ref. [12] for a review).

3.1 Boundary conditions and the field equations

The concepts that will be developed in the following are best introduced by considering a

free scalar field in the half-space x0 ≥ 0 with various boundary conditions at x0 = 0. A

simple lattice formulation of this theory is obtained by choosing the lattice field φ(x) to

reside on the sites of a hypercubic lattice with spacing a. The expression

S = a4
∑

x0≥a

∑

x

1

2

{

∂µφ(x)∂µφ(x) + m2φ(x)2
}

(3.1)

is then a possible choice of the lattice action, where ∂µ denotes the forward nearest-

neighbour difference operator in direction µ and the mass m is assumed to be positive.

Note that the action depends on the field variables at time x0 = a, 2a, 3a, . . . only. These

are thus the unconstrained dynamical degrees of freedom of the field which are to be inte-

grated over in the functional integral.

Starting from the action (3.1), the propagator 〈φ(x)φ(y)〉 can easily be worked out in a

time–momentum representation. It then turns out that the propagator satisfies Neumann

boundary conditions in the continuum limit. On the other hand, after a slight modification

of the action by a boundary term,

S → S + a3
∑

x

c

2a
φ(x)2

∣

∣

x0=a
, (3.2)

the calculation yields a propagator that satisfies Dirichlet boundary conditions in the con-

tinuum limit, for any fixed c > 0 (the powers of a are such that c is dimensionless).
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Some understanding of how a particular boundary condition arises can be achieved by

considering the field equation

〈η(x)φ(y)〉 = a−4δxy, η(x) =
δS

δφ(x)
. (3.3)

A short calculation yields

η(x) = {−∂∗µ∂µ + m2}φ(x) at x0 > a, (3.4)

where ∂∗µ denotes the backward nearest-neighbour difference operator. In the bulk of the

lattice, the field equation thus coincides with the lattice Klein–Gordon equation. At x0 = a,

however, a different equation is obtained,

η(x) =
c

a2
φ(x) −

1

a
∂0φ(x) + {−∂∗k∂k + m2}φ(x) , (3.5)

which depends on the details of the action close to the boundary. Formally, the first term

in this expression dominates in the continuum limit and the field equation at the boundary

thus implies Dirichlet boundary conditions at a = 0 if c > 0. On the other hand, the second

term dominates if c = 0, which leads to Neumann boundary conditions in the continuum

limit.

3.2 Natural boundary conditions

The example considered in the previous subsection illustrates the fact that boundary con-

ditions are a property of the continuum theory which arises dynamically in the continuum

limit. In particular, they are not determined by the space of lattice fields alone. Another

outcome is that some boundary conditions are obtained generically, while others (Neumann

and mixed boundary conditions in the study case) are unstable under perturbations of the

lattice action.

In an interacting theory, and also in free theories with complicated lattice actions, the

connection between the lattice field equations and the boundary conditions in the contin-

uum limit may not be as transparent as suggested above. It seems plausible, however,

that the boundary conditions are always of the form O(x)|x0=0 = 0, where O(x) is a lin-

ear combination of local fields with the appropriate number of components and symmetry

properties.

The boundary conditions that are stable under perturbations of the lattice theory, and

which thus arise naturally, then correspond to the fields with the lowest possible dimension.

Some tuning of the lattice theory will normally be required in all other cases, unless there

are some symmetries that protect O(x) from mixing with lower dimensional fields.

3.3 Are Schrödinger functional boundary conditions natural?

Following Wilson [13], the quark fields are represented on the lattice by Dirac spinors ψ(x)

that reside on the points x of the lattice. Since QCD is asymptotically free, the scaling

dimension of the local fields in this theory coincides with their engineering dimension (up to

– 6 –
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logarithms). In particular, the fields of lowest dimension that carry the quantum numbers

of the quark fields are the quark fields themselves.

The boundary conditions at x0 = 0, which arise naturally in the continuum limit,

are thus of the form Bψ(x)|x0=0 = 0, where B is a constant matrix in Dirac and colour

space. At x0 = T the boundary conditions are linked to those at x0 = 0 by the time

reflection symmetry and charge conjugation then determines the boundary conditions for

the antiquark field.

If the lattice theory is invariant under gauge transformations, cubic rotations and

parity, as will be the case in the following, the boundary conditions must respect these

symmetries.3 Moreover, B cannot have maximal rank, as otherwise the boundary condi-

tions and the Dirac equation at 0 < x0 < T would imply a vanishing quark propagator. Up

to a normalization constant, the only matrices that are compatible with all these conditions

then are B = P+ and B = P−.

Schrödinger functional boundary conditions thus arise naturally and do not require any

particular adjustments of the lattice action. There are two classes of lattice theories, which

are distinguished by the sign in the boundary condition P±ψ(x)|x0=0 = 0. The difference

matters if the quark mass does not vanish, but the sign may easily be determined, in any

given case, by studying the free-quark propagator for example.

4. Ginsparg–Wilson quarks in one dimension

In the presence of the boundaries, an acceptable lattice Dirac operator that satisfies the

Ginsparg–Wilson relation in the bulk of the lattice still needs to be found. The Wilson–

Dirac operator provides a simple solution to this problem in one dimension. This is a

somewhat trivial case, but it gives important hints for the construction of the Dirac operator

in higher dimensions.

4.1 Lattice Dirac operator

For simplicity the gauge field is omitted in this section. The Wilson–Dirac operator in one

dimension then reads

D =
1

2
{γ0(∂

∗
0 + ∂0) − a∂∗0∂0} = P+∂∗0 − P−∂0. (4.1)

In the absence of boundaries, this operator satisfies the Ginsparg–Wilson relation

γ5D + Dγ5 = aDγ5D. (4.2)

Moreover, from the definition (4.1) it is immediate that γ5D is hermitian and that the

quark propagator is given by

S(x0, y0) = θ(x0 ≥ y0)P+ + θ(x0 ≤ y0)P−, (4.3)

where θ(∗) is equal to 1 if the logical condition in brackets is true and 0 otherwise.

3Gauge transformations include the gauge field variables at the boundaries and are thus a spurion

symmetry to some extent. In the present context, this is of no importance, however, since B does not

depend on the gauge field.
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Following the standard treatment [2], the dynamical degrees of freedom of the quark

fields in the presence of the boundaries at x0 = 0 and x0 = T are taken to be their

components at x0 = a, 2a, . . . T − a. It is convenient to assume that the fields are defined

at all other times as well, but that they are equal to zero there.

The Dirac operator in the presence of the boundaries (which is also denoted by D)

maps this space of quark fields into itself. At x0 = a, 2a, . . . , T − a, its action is given by

eq. (4.1), while at x0 ≤ 0 and x0 ≥ T the target field is set to zero. With respect to the

scalar product

(ψ,χ) = a
T−a
∑

x0=a

ψ(x0)
†χ(x0), (4.4)

the operator γ5D is then again hermitian. It is also easy to show that D has no zero modes

and that the associated propagator coincides with the propagator (4.3) on the infinite

lattice, at all times in the range 0 < x0, y0 < T . In particular, the correct Schrödinger

functional boundary conditions are obtained in the continuum limit.

4.2 Modified Ginsparg–Wilson relation

As already pointed out in section 1, the lattice Dirac operator is not expected to satisfy

the Ginsparg–Wilson relation in the presence of the boundaries, for general reasons. On

the finite lattice, the operator D introduced above in fact satisfies the modified relation

γ5D + Dγ5 = aDγ5D + γ5P, (4.5)

where P is a local operator given by

Pψ(x0) =
1

a
{δx0aP−ψ(a) + δx0 T−aP+ψ(T − a)} . (4.6)

Equation (4.5) is a straightforward consequence of the precise definition of D in the presence

of the boundaries. In particular, the boundary term γ5P is obtained when the product

Dγ5D is worked out at x0 = a and x0 = T − a.

By multiplication of the modified Ginsparg–Wilson relation (4.5) from both sides with

the quark propagator, it follows that

γ5S(x0, y0) + S(x0, y0)γ5 = γ5δx0y0
+ (4.7)

S(x0, a)γ5P−S(a, y0) + S(x0, T − a)γ5P+S(T − a, y0) .

In the continuum limit, the projectors P± on the right-hand side of this equation can be

dropped in view of the boundary conditions satisfied by the propagator. The relation

then reduces to the one-dimensional form of the chiral Ward identity (2.10). This shows

that the presence of the boundary term in the modified Ginsparg–Wilson relation (4.5) is

directly linked to the breaking of chiral symmetry in the continuum theory by the boundary

conditions.

– 8 –
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5. Lattice Dirac operator in four dimensions

Since Schrödinger functional boundary conditions arise naturally, the choice of the lattice

Dirac operator is not critical and there are probably many viable constructions. The

operator proposed here is a simple modification of the Neuberger–Dirac operator in infinite

volume.

5.1 Definition

As before the theory is first set up on the infinite lattice. The quark fields are thus assumed

to be defined at all sites of the lattice. Although the gauge field continues to play a spectator

rôle, it is now included in the formulae. The Wilson–Dirac operator is then given by [13]

Dw =
1

2
{γµ(∇∗

µ + ∇µ) − a∇∗
µ∇µ} , (5.1)

where ∇µ and ∇∗
µ denote the gauge-covariant forward and backward difference operators.

As already mentioned, the starting point in this section is the Neuberger–Dirac operator

[7]

D =
1

ā

{

1 − A
(

A†A
)−1/2

}

, (5.2)

A = 1 + s − aDw, ā =
a

1 + s
. (5.3)

The parameter s in this formula allows for some optimization and is only relevant in the

context of numerical simulations. In practice, it is normally set to a fixed value in the

range 0 ≤ s ≤ 1/2.

In the presence of the boundaries at x0 = 0 and x0 = T , the dynamical degrees of

freedom of the quark fields reside on the lattice sites at time x0 = a, 2a, . . . , T − a. It is

again convenient to assume that the fields are defined at all other points as well and that

they are equal to zero there. The Wilson–Dirac operator may be considered to be a linear

operator in this space of fields, whose action at 0 < x0 < T is given by eq. (5.1) (elsewhere

the target field is set to zero). This is the lattice Dirac operator that was introduced by

Sint [2].

The structure of eq. (5.2) is such that D satisfies the Ginsparg–Wilson relation (4.2)

automatically (with a replaced by ā) if γ5A is hermitian. In the presence of the boundaries,

the Dirac operator must therefore be given by a different expression. A formula that works

out is

D =
1

ā

{

1 −
1

2
(U + U˜)

}

, (5.4)

U = A
(

A†A + caP
)−1/2

, U˜ = γ5U
†γ5 , (5.5)

where c ≥ 1 is another tuneable parameter, whose optimal value will turn out to be close

to 1 + s. In eq. (5.5), the boundary operator

Pψ(x) =
1

a
{δx0aP−ψ(x)|x0=a + δx0 T−aP+ψ(x)|x0=T−a} (5.6)

– 9 –
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is the four-dimensional version of the operator P previously encountered, while A is again

given by eq. (5.3), where Dw is now the Wilson–Dirac operator in the presence of the

boundaries.

The merits of the definition (5.4),(5.5) will be discussed in detail, but before this it

may be helpful to note that the operator D reduces to the Wilson–Dirac operator in the

one-dimensional theory if s = 0 and c = 1. The results reported in section 4 actually imply

that A†A + caP = 1 in this case.

5.2 Lattice symmetries, hermiticity and spectral bounds

It is not difficult to check that the Dirac operator D transforms like the Wilson–Dirac

operator under cubic rotations, parity, time-reflections and charge conjugation. The latter

interchanges U with U˜, and having the sum of these two operators in eq. (5.4) also ensures

that γ5D is hermitian.

Another implication of the form (5.5) is the bound

‖U‖ = ‖U˜‖ ≤ 1. (5.7)

To show this, it suffices to note that

‖Uψ‖2 =
(

χ,A†Aχ
)

≤
(

χ, (A†A + caP )χ
)

= ‖ψ‖2, (5.8)

for any quark field ψ, where χ = (A†A+caP )−1/2ψ. The spectrum of āD is thus contained

in the unit disk in the complex plane centred at 1. However, one should not expect the

spectrum to be on the unit circle, as is the case for Dirac operators satisfying the Ginsparg–

Wilson relation.

In the present framework, the natural choice of the massive Dirac operator is [14]

Dm = (1 −
1

2
ām)D + m. (5.9)

When the bare quark mass m is in the range 0 ≤ m ≤ 2/ā, as will be assumed in the

following, the spectrum of this operator is separated from the origin by a distance of at

least m. The middle term in the expansion

(γ5Dm)2 = m2 + m(1 −
1

2
ām)(D† + D) + (1 −

1

2
ām)2 (γ5D)2 (5.10)

is in fact non-negative and the eigenvalues λn of γ5Dm are therefore bounded by

λ2
n ≥ m2 + (1 −

1

2
ām)2µ2, (5.11)

where µ denotes the spectral gap at m = 0. This bound coincides with the spectral bound

(2.8) in the continuum theory, up to corrections of order am.

An important consequence of these results is that the determinant detDm is real and

non-zero at all quark masses m > 0. Actually, detDm must be positive at these masses,

because this is trivially the case at m = 2/ā and because the determinant is a continuous

function of m, on any finite lattice.

– 10 –
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5.3 Locality

In position space, the Dirac operator is represented by a kernel D(x, y) through

Dψ(x) = a4

T−a
∑

y0=a

∑

y

D(x, y)ψ(y), 0 < x0 < T. (5.12)

Locality requires that the bound

a5‖D(x, y)‖ ≤ Ce−κ‖x−y‖/a (5.13)

holds for some constants C and κ > 0 that do not depend on a. Moreover, up to such

exponentially small tails, D(x, y) should be locally constructed and only depend on the

gauge field variables in the vicinity of x and y.

In infinite volume, a rigorous proof of the locality of the Neuberger–Dirac operator can

be given if the gauge field is not too rough on the scale of the lattice spacing [15]. Further

studies then suggest that locality holds under far more general conditions, including those

typically encountered in numerical lattice QCD at lattice spacings a ≤ 0.1 fm [15, 16].

The proof presented in ref. [15] is based on an expansion of the inverse square root

in eq. (5.2) in Legendre polynomials. The expansion converges rapidly if A†A ≥ α for

some α > 0, and the locality of the Dirac operator then follows immediately. In the case

of the operator (5.5), the Legendre expansion similarly links its locality properties to the

existence of a non-zero lower bound on A†A + caP .

As shown in appendix A, the spectral gap of A†A+caP is not smaller than that of A†A

on the infinite lattice, independently of how precisely the gauge field is extended from the

time slice 0 ≤ x0 ≤ T to all times. The field may be extended through time reflections at

the planes x0 = 0 mod T , for example, which is a good choice in the present context, since

the smoothness properties of the field (if any) are preserved. In particular, the estimates

of ref. [15] then immediately imply the existence of a spectral gap if the gauge field at

0 ≤ x0 ≤ T is sufficiently smooth on the scale of the lattice spacing.

Presumably the locality properties of the Dirac operator (5.4) are thus as good as those

of the Neuberger–Dirac operator on lattices with periodic boundary conditions, also when

the rigorous arguments of ref. [15] do not apply. However, some numerical studies may still

be required to confirm this in the cases of interest.

5.4 Chiral symmetry

At a distance d from the boundaries, the kernel D(x, y) of the Dirac operator (5.4) coincides

with the kernel of the Neuberger–Dirac operator on the infinite lattice, up to terms that

decrease exponentially like e−κd/a. From the expansion in Legendre polynomials mentioned

in the previous subsection, for example, this property is evident, taking into account the

fact that the operator P is supported at the boundaries of the lattice. The separation of

bulk and boundary terms is actually a direct consequence of the locality of the operators

involved (see appendix B).

The remark has two important implications. First of all, it shows that the Schrö-

dinger functional constructed here probes the right theory, i.e. the one where the lattice

Dirac operator in the absence of the boundaries is equal to the Neuberger–Dirac operator.
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Secondly, it follows that

γ5D + Dγ5 = āDγ5D + ∆B, (5.14)

where ∆B is a local operator with kernel ∆B(x, y) supported in the vicinity of the bound-

aries (up to the usual exponentially small tails). Correlation functions of local fields at

physical distances from the boundaries thus satisfy the same chiral Ward identities as they

do on lattices with periodic boundary conditions, for example.

Starting from the definition (5.4),(5.5) of the Dirac operator, or from the formulae

in appendix B, the operator ∆B can be worked out explicitly. One may hope to find

∆B = γ5P , as is the case in one dimension, but the expressions that are obtained are

complicated and not very illuminating.

5.5 Boundary fields and O(a) improvement

A possible lattice representation of the boundary fields (2.5) at time x0 = 0 is

ζ(x) = U(x, 0)|x0=0P−ψ(x)|x0=a, (5.15)

ζ(x) = ψ(x)|x0=aP+U(x, 0)−1|x0=0, (5.16)

where U(x, µ) denotes the link variable at the point x in direction µ. This definition

coincides with the one commonly adopted in lattice QCD with Wilson quarks [2]. It

should be noted, however, that the normalization of these fields depends on the details of

the lattice regularization and may not be the canonical one (cf. subsection 5.6).

Formulations of lattice QCD with Ginsparg–Wilson quarks are automatically on-shell

O(a)-improved [17, 18]. In the presence of the boundaries, this is no longer the case, but

the theory can be improved by including a few O(a) boundary counterterms in the lattice

action. The list of terms that must be added was determined in ref. [18]. One of the

counterterms amounts to a modification of the lattice Dirac operator, while all others are

either pure gauge terms or reduce to contact terms and 1+O(am) renormalization factors.

These other counterterms can be implemented as in the standard lattice theory [2, 18].

The situation is a bit more tricky in the case of the counterterm that modifies the lattice

Dirac operator, because some of the desirable properties of the latter may be compromised

(the spectral bound (5.11), for example).

The counterterm at the boundary x0 = 0 is usually taken to be a straightforward

lattice implementation of the boundary action

a

∫

x0=0

d3x
{

ψ(x)P+D0ψ(x) + ψ(x)D
←

0P−ψ(x)
}

. (5.17)

The precise choices that one makes do not matter, since the counterterm is uniquely deter-

mined by its symmetries and dimension, up to redundant terms and corrections of higher

order in a. In the present context, the O(a) improvement can therefore also be achieved by

tuning the coefficient c on which the Dirac operator (5.4),(5.5) depends. Changes of this

coefficient actually amount to a modification of the operator in the vicinity of the bound-

aries by a local term with the correct symmetries. The properties of the Dirac operator

discussed in the previous subsections are then preserved.
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5.6 Free-quark theory

In the absence of the gauge field, it is possible to check explicitly that the lattice theory has

the correct continuum limit and that the O(a) improvement works out in the way described

in the previous subsection.

The operator under the square root in eq. (5.5) assumes the form

A†A + caP = (1 + s)2 + sa2
∑

µ

∂∗µ∂µ +
1

2
a4

∑

µ<ν

∂∗µ∂µ∂∗ν∂ν + (c − 1)aP (5.18)

in the free theory. As explained in subsection 5.1, the operator acts on quark fields in the

presence of the boundaries. Its eigenfunctions at c = 1, for example, are given by

sin(p0x0) eipx, p0 =
nπ

T
, n = 1, 2, . . . , T/a − 1. (5.19)

Since the associated eigenvalues are bounded from below by (1−|s|)2 if |s| ≤ 1, the locality

of the free Dirac operator is guaranteed at all |s| < 1 and c ≥ 1.

In the time-momentum representation, the kernel D(x, y) of the Dirac operator can be

worked out analytically to some extent. The quark propagator, on the other hand, may

be difficult to obtain in closed form, but it can be computed numerically on lattices with

hundreds of points in each direction, using established techniques (see ref. [19], for example).

This allows the lattice propagator to be compared with the continuum propagator in a large

range of lattice spacings, spatial momenta and quark masses.

Many checks were then performed, including the following three:

(1) It was verified that the quark propagator
〈

ψ(x)ψ(y)
〉

at non-zero distances from the

boundary as well as the boundary-to-bulk propagator
〈

ζ(x)ψ(y)
〉

have the correct

continuum limit (explicit expressions for the continuum propagator can be found in

ref. [20]).

(2) The full spectrum of (γ5D)2 was computed and compared with the spectrum in the

continuum theory. In particular, the presence of any additional modes that would

survive in the continuum limit could be excluded in this way.

(3) The approach of the propagator to the continuum limit was studied and it was shown

that the lattice effects of order a can be cancelled by tuning the parameter c of the

lattice Dirac operator and the field normalization factors.

The O(a) improvement is achieved for values of c close to 1 + s, and the improved,

canonically normalized boundary field is given by Z(1 + bam)ζ where Z ' 1 − s/4 and

b ' −3/4. These normalization factors will be rarely needed, but it is reassuring to note

that they are in a range that is not uncommon for such factors. Moreover, the observed

convergence of the propagators to the continuum limit is quite similar to the one seen in

the standard Wilson theory[20].
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6. Concluding remarks

Lattice Dirac operators that satisfy the Ginsparg–Wilson relation have little in common

with the difference operators that are obtained by “discretizing” the classical Dirac equa-

tion. Classical concepts can in fact be rather misleading in lattice field theory. In particular,

boundary conditions cannot simply be imposed on the lattice fields but arise dynamically

in the continuum limit.

Universality considerations gain additional importance in this context, since they apply

to any local theory, independently of how complicated it may be. The definition of the

Schrödinger functional proposed in this paper heavily builds on such arguments. It is

clearly not the only possible construction, but the proposed formulation works out and has

many attractive features.

In lattice QCD with Ginsparg–Wilson quarks, the application of domain decomposition

methods [21] appeared to be excluded so far, because it was not clear how to restrict the

lattice Dirac operator to blocks of lattice points. Following the lines of section 5, it is now

straightforward to come up with viable expressions for the block Dirac operators. The

boundary operator P , for example, may be fixed by requiring eq. (A.1) to remain valid

when R is set to the block restriction operator. The locality of the block Dirac operators

as well as a number of other desirable properties are then guaranteed.
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A. Spectral bound on A†A + caP

As explained in subsection 5.3, the locality of the Dirac operator (5.4) can be proved

rigorously if A†A + caP ≥ α for some α > 0. In this appendix, it is shown that such a

bound can be obtained by relating A†A + caP to the operator A†A on the infinite lattice.

The standard setup of the lattice Schrödinger functional assumes the gauge field vari-

ables U(x, µ) to be defined at all times 0 ≤ x0 < T if µ = 0 and additionally at x0 = T if

µ = 1, 2, 3. Evidently, a given field can always be extended to all times by setting the so

far undefined link variables to unity, for example.

Exactly which extension is chosen will not matter in the following. Once a definite

prescription is adopted, the Wilson–Dirac operator becomes a well-defined, bounded linear

operator in the space of all square-summable quark fields on the infinite lattice. The

associated operator A [eq. (5.3)] is denoted by Â in order to avoid any confusion with the

operator A that appears in eq. (5.5).

A straightforward calculation, similar to the one that leads to eq. (4.5), now shows

that

R
(

A†A + aP
)

R = RÂ†ÂR, (A.1)
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where R projects the quark fields to the physical subspace in the presence of the boundaries.

Explicitly,

Rψ(x) =

{

ψ(x) if 0 < x0 < T ,

0 otherwise,
(A.2)

for any quark field ψ on the infinite lattice. Note that the product on the left-hand side

of eq. (A.1) is perfectly well-defined, since R projects the fields to the physical subspace

before the operator in brackets (which can only act on quark fields in this space) is applied.

Quark fields in the physical subspace satisfy Rψ = ψ, and from eq. (A.1) it then follows

that

(ψ, (A†A + caP )ψ) = (ψ, Â†Âψ) + (ψ, (c − 1)aPψ) ≥ (ψ, Â†Âψ), (A.3)

where c ≥ 1 was used and also the fact that aP is a projector. Since (A.3) holds for all

quark fields in the physical subspace, this shows that the operator A†A + caP is bounded

from below by the spectral gap of Â†Â, as asserted in subsection 5.3.

B. Separation of bulk and boundary terms

Equation (A.1) relates the theory in the presence of the boundaries to the one on the

infinite lattice. The goal in the following lines is to work out the relation between the

corresponding Dirac operators. Along the way, a separation of bulk and boundary terms

is achieved, which allows the position-space kernels of the operators to be compared with

each other.

The starting point is the identity

R(A†A + caP )R + (1 − R)Â†Â(1 − R) = Â†Â + B̂, (B.1)

in which

B̂ = (c − 1)RaPR − (1 − R)Â†ÂR − RÂ†Â(1 − R) (B.2)

denotes an operator supported at the boundaries. Since A†A+caP operates in the physical

subspace, and since R is a projector, eq. (B.1) implies

R(A†A + caP )−1/2R = R(Â†Â + B̂)−1/2R. (B.3)

Using a well-known integral representation, the operator on the right-hand side of this

equation can be written in the form

(Â†Â + B̂)−1/2 = (Â†Â)−1/2 −

∫ ∞

−∞

dt

π
(Â†Â + t2)−1B̂(Â†Â + B̂ + t2)−1. (B.4)

Taken together, these equations provide a representation of (A†A + caP )−1/2 (and thus of

the Dirac operator in the presence of the boundaries) in terms of the operator (Â†Â)−1/2

on the infinite lattice plus another operator localized at the boundaries. Both (Â†Â+ t2)−1

and (Â†Â + B̂ + t2)−1 are in fact expected to be local operators, and the last term in

eq. (B.4) is thus supported in the vicinity of the boundaries (up to exponentially small

tails).
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